Roll No.

FOURTH SEMESTER EXAMINATION 2021-22

M.Sc. Mathematics

Paper - IV

Fuzzy Sets \& Their Applications - II

Time : 3.00 Hrs.
Max. Marks : 80
Total No. of Printed Page : 04
Mini. Marks : 29

Note: Question paper is divided into three sections. Attempt question of all three section as per direction. Distribution of Marks is given in each section.

Section - 'A'

Very short type question (in few words).
Q. 1 Attempt any six question from the following questions :
(i) Prove that $\operatorname{Pl}(A)+\operatorname{Pl}(\bar{A}) \geq 1$.
(ii) Write Denipster's rule of combination.
(iii) Prove that $\operatorname{Nec}(A)>0 \Rightarrow \operatorname{Pos}(A)=1$.
(iv) Write the primitives defined by Lukasiewicz.
(v) Write the matrix form of compositional rule of inference.
(vi) Draw the architecture of a fuzzy expert system.
(vii) Write the formula for the degree of membership grade indicating the degree of group preference of alternative x_{i} over x_{j}.
(viii) Write the linear programming problem when fuzzy number are triangular.
(ix) If $X=\{w, x, y, z\}$

$$
.75_{S}=\{(w, y),(x, y)\}
$$

find $.75_{0}$
(x) Calculate:
$\left[c(B) O^{w i} C(A)\right]^{-1}(x, y)$
where w_{i} represents Lukasiewicz implication.

Section - 'B'

Short answer question (In 200 words)

$4 \times 5=20$
Q. 2 Attempt any four question from the following questions :
(i) Prove that Bel measure obeys monotonicity property.
(ii) Write short notes on Liguistic Hedges.
(iii) What do you mean by Kernel of an expert system.
(iv) Draw a general scheme of a fuzzy controller.
(v) What do you mean by linear programming problem?

Section - ' ${ }^{\prime}$ '

Long answer/Essay type question.

Q. 3 Attempt any four question from the following questions :
(i) (a) Let $X=\{a, b, c, d\}$. Given the basic assignment $m(\{a, b, c\})=.5$, $m(\{a, b, d\})=.2$ and $m(X)=.3$ determine the corresponding belief, playsibility and communality measures.
(b) Prove that:

$$
\operatorname{Pl}(A) \geq \operatorname{Bel}(A)
$$

(ii) (a) Let a given finite body of evidence ($子, w$) be nested. then prove that for all $A, B \in P(x)$

$$
\begin{aligned}
& \operatorname{Bel}(A \cap B)=\min [\operatorname{Bel}(A), \operatorname{Bel}(B)] \\
& \operatorname{Pl}(A \cup B)=\max \{P l(A), P l(B)\}
\end{aligned}
$$

(b) Determine the basic assignment possibility measure and necessity measure for the following possibility distribution defined on $X=\left\{x_{i} / i \in N_{n}\right\}$ for appropriate values of n $' r=\langle 1,8,8,8,5,2\rangle$
(iii) Let sets of values of variables x and y be $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $y=\left\{y_{1}, y_{2}\right\}$ respectively. Assume that a proposition "If x is A, then y is B " is given where

$$
A=.6 / x_{1}+1 / x_{2}+.9 / x_{3} \& B=.6 / y_{1}
$$

Then, given a fact expressed by the proposition " x is A^{\prime} " where $A^{\prime}=$ use the generalized. modlus poneus to derive a conclusion is the form $" y$ is $B^{\prime} "$
(iv) (a) Write the reasonable axiams of fuzzy implication.
(b) Let i_{1}, i_{2} be t-norms such that i_{1}, i_{2} be t-norms such that $i_{1}(a, b) \leq i_{2}(a, b)$ that for all $a, b \in[0,1]$ and let I_{1}, I_{2} be R_{-}implication based on i_{1}, i_{2} respectively.

Then prove that
$I_{1}(a, b) \geq I_{2}(a, b)$ for all $a, b \in[0,1]$.
(v) (a) Discuss any two defuzzification methods on fuzzy control.
(b) Consider a fuzzy automation with $X=\left\{x_{1}, x_{2}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}$, $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ where output relation R and stati-transition relation S are defined, respectively, by the matrix.

$$
R=\begin{gathered}
y_{1} \\
z_{1} \\
z_{2} \\
z_{2} \\
z_{3} \\
z_{4}
\end{gathered}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
.5 & 1 & .3
\end{array}\right]
$$

and the three dimensional array

$$
\left.S=\left[\begin{array}{c}
\\
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array} \begin{array}{cccc}
z_{1} & z_{2} & z_{3} & z_{4} \\
0 & .4 & .2 & 1 \\
.3 & 1 & 0 & .2 \\
.5 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{c}
\\
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array} \begin{array}{rcccc}
z_{1} & z_{2} & z_{3} & z_{4} \\
0 & 0 & 1 & 0 \\
.2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & .3 & 0 & .6
\end{array}\right]
$$

Generate sequences of three fuzzy internal and output states under the following conditions $C^{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array} 1\right]$ the input states $A^{1}=\left[\begin{array}{ll}2 & 1\end{array}\right], A^{2}=[1,0], A^{3}=\left[\begin{array}{ll}1 & .4\end{array}\right]$
(vi) (a) Write short notes on individual Decision making \& multiperson decision making.
(b) Assume that each individual of a group of five judges has a total preference odering
$P_{i}\left(i \in N_{5}\right)$ on four stcaters a, b, c, d. The orderings are
$P_{1}=\langle a, b, d, c\rangle$
$P_{2}=\langle a, c, d, b\rangle$
$P_{3}=\langle b, a, c, d\rangle$
$P_{4}=\langle a, d, b, c\rangle$
use fuzzy multiperson decision making to determine the group decision.
(vii) Solve the following FLPP $\max z=6 x_{1}+5 x_{2}$
s.t. $\quad(5,3,2) x_{1}+(6,4,2) x_{2}<(25,6,9)$ $(5,2,3) x_{1}+(2,1.5,1) x_{2} \leq(13,7,4)$
where $x_{1}, x_{2}>0$

